1. Determine if the following are linear

mappings:
a)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(x_1) = \begin{pmatrix} x_1 - x_2 \\ x_2 \end{pmatrix}$
 $(x_1 + x_2)$
 (x_2)
 $(x_3 + x_2)$
 $(x_4 + x_2)$
 $(x_1 + x_2)$

b)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f\left(x_1\right) = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 + x_3 \end{pmatrix}$.

c)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f\left(x_1\right) = \begin{pmatrix} 1 \\ x_2 \\ x_3 \end{pmatrix}$.

d)
$$f: \mathbb{P}_2 \to \mathbb{P}_1$$
, $f(a_0 + a_1 t + a_2 t^2) = 2a_0 + a_1 + (a_2 - a_1)t$.

e)
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
, $f\left(x_1\right) = \left(x_1^2 + x_2^2\right)$.

f)
$$f: M_{n,n} \rightarrow M_{n,n}$$
, $f(A) = A + A^{t}$
 $M_{n,n}$: vector space of square matrices

 $N \times n$

2. Consider the subset M of 2x2 square matrices defined as:

$$M = \left\{ \begin{pmatrix} a & b \\ c & 0 \end{pmatrix} & con & a,b,c \in \mathbb{R} \right\}$$

and the mapping M-M defined by:

$$\begin{cases}
\begin{pmatrix} a & b \\ c & 0 \end{pmatrix}
\end{pmatrix} = \begin{pmatrix} a-b & b-a \\ c & 0 \end{pmatrix}.$$

Observe that M is a vector space and consider the basis

$$18 = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}.$$

Show that f is linear and compute its associated matrix with respect to B.

3. Consider the linear mapping $f: \mathbb{R}^3 \to \mathbb{R}^2$ that maps the vectors

$$\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

to the vectors

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

respectively. These vectors are coordinate vectors with respect to the canonical bases of \mathbb{R}^3 y \mathbb{R}^2 . Compute the associated matrix of # with respect to the canonical bases of \mathbb{R}^3 and \mathbb{R}^2 .

- 4. Define the linear mapping $f: V \rightarrow W$, where dim V=3 and dim W=4, such that $f(\bar{b}_1 \bar{b}_3) = \bar{c}_1$, $f(\bar{b}_2 \bar{b}_3) = \bar{c}_1 \bar{c}_2$, and $f(2\bar{b}_3) = 2\bar{c}_1 + 2\bar{c}_3$. Here, $B=\{\bar{b}_1,\bar{b}_2,\bar{b}_3\}$ is a basis of V and $C=\{\bar{c}_1,\bar{c}_2,\bar{c}_3,\bar{c}_4\}$ is a basis of W.
 - a) Find the associated matrix with respect to B and C.
 - b) Find a basis for Imf c) Find a basis for Kerf

5. Determine if the following mappings:

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 defined by $f(x_1) = (x_3)$
 $(x_2) = (x_1 + x_2)$
 $(x_2) = (x_2 + x_3)$

b)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 defined by $f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ 0 \end{pmatrix}$

are linear mappings. If they are linear, find their kernel and range. Study their injectivity and surjectivity.

- 6. Determine whether the following statements are true or false. Justify your answer.
 - a) If $g:V\to W$ is a linear mapping, sometimes if is possible to find three distinct vectors $u,v\in V$ and $u\in W$ such that g(u)=g(v)=w.
 - b) Assuming that the previous statement is true, if $g(\bar{u}) = g(\bar{v}) = \bar{w}$, then $\bar{u} \bar{v} \in \ker g$.
 - c) If g:V-W is a linear mapping, then
 the range of g is W.
 - d) If $\{\bar{v}_1, \bar{v}_2, ..., \bar{v}_n\}$ is a basis of \mathbb{R}^n and $\{\bar{w}_1, \bar{w}_2, ..., \bar{w}_n\}$ is a basis of \mathbb{R}^{n-1} , then there are two linear mappings $f: \mathbb{R}^n \to \mathbb{R}^n$ and $g: \mathbb{R}^n \to \mathbb{R}^n$ such that $f(\bar{v}_i) = \bar{w}_i$ and $g(\bar{w}_i) = \bar{v}_i$ for i = 1, 2, ..., n.

e) If $f:\mathbb{R}^2 \to \mathbb{R}^2$ is a linear mapping defined by $f(\bar{o})=\bar{o}$, then f is identically the null mapping $(f(\bar{x})=\bar{o} \ \forall \bar{x} \in \mathbb{R}^2)$.

f) There is a linear mapping f: R⁵→R⁵ with dimkerf=dim lmf.

g) Assuming that $f: M_{2,2} \rightarrow M_{2,2}$ is linear with dim lm f = 4, if $f(A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.

- 7. Define the linear mapping $f:V \rightarrow W$ where dim $V = \dim W = 3$, such that $f(\bar{e}_1) = \bar{u}_1 \bar{u}_2$, $f(\bar{e}_2) = \bar{u}_2$, and $f(\bar{e}_3) = \bar{u}_1$. Here, $B = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ is a basis of V and $C = \{\bar{u}_1, \bar{u}_2, \bar{u}_3\}$ is a basis of W.
 - a) Find the associated matrix with respect to By c.
 - b) Find dim Imf.
 - c) Find a basis of Kerf.
 - d) Given a new basis of V, $\mathcal{B} = \{\bar{V}_1, \bar{V}_2, \bar{V}_3\}$ where $\bar{e}_1 = \bar{V}_1$, $\bar{e}_2 = \bar{V}_1 + \bar{V}_2$, and $\bar{e}_3 = \bar{V}_1 + \bar{V}_3$, compute the associated matrix with respect to $\hat{\mathcal{B}}$ and \hat{C} .
 - e) Given the following change of basis

$$[\overline{W}] = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix} [\overline{W}]_{C}, \overline{W} \in W$$

compute the associated matrix with respect to B and E.

- g) Obtain the matrix associated with f with respect to B and C.
- h) study the injectivity and surjectivity of
- 8. In \mathbb{R}^3 , consider the basis $\{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$. Study

 the injectivity and surjectivity of the
 linear mapping $f: \mathbb{R}^3 \to \mathbb{R}^3$ defined by $f(\bar{e}_1) = a\bar{e}_1 + \bar{e}_2 + \bar{e}_3$, $f(\bar{e}_2) = \bar{e}_1 + \bar{e}_2 + \bar{e}_3$, and $f(\bar{e}_3) = \bar{e}_1 + b\bar{e}_2 + \bar{e}_3$ in terms of the parameters

 a and b.